On the relation between Euclidean and Lorentzian 2D quantum gravity
نویسنده
چکیده
Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (generalized) Lorentzian spacetime. This motivates a map between the parameter spaces of the two theories, under which their propagators get identified. In two dimensions, Lorentzian quantum gravity can therefore be viewed as a “renormalized” version of Euclidean quantum gravity. PACS codes: 02.10.Eb, 04.20Gz, 04.60.Nc, 05.20.y
منابع مشابه
Euclidean and Lorentzian Quantum Gravity – Lessons from Two Dimensions
No theory of four-dimensional quantum gravity exists as yet. In this situation the two-dimensional theory, which can be analyzed by conventional field-theoretical methods, can serve as a toy model for studying some aspects of quantum gravity. It represents one of the rare settings in a quantum-gravitational context where one can calculate quantities truly independent of any background geometry....
متن کاملCrossing the c=1 Barrier in 2d Lorentzian Quantum Gravity
In an extension of earlier work we investigate the behaviour of two-dimensional Lorentzian quantum gravity under coupling to a conformal field theory with c > 1. This is done by analyzing numerically a system of eight Ising models (corresponding to c = 4) coupled to dynamically triangulated Lorentzian geometries. It is known that a single Ising model couples weakly to Lorentzian quantum gravity...
متن کاملSimplicial Euclidean and Lorentzian Quantum Gravity
One can try to define the theory of quantum gravity as the sum over geometries. In two dimensions the sum over Euclidean geometries can be performed constructively by the method of dynamical triangulations. One can define a proper-time propagator. This propagator can be used to calculate generalized Hartle-Hawking amplitudes and it can be used to understand the the fractal structure of quantum ...
متن کاملar X iv : h ep - l at / 0 30 60 33 v 1 2 5 Ju n 20 03 Fermions in 2 D Lorentzian Quantum Gravity
We implement Wilson fermions on 2D Lorentzian triangulation and determine the spectrum of the Dirac-Wilson operator. We compare it to the spectrum of the corresponding operator in the Euclidean background. We use fermionic particle to probe the fractal properties of Lorentzian gravity coupled to c = 1/2 and c = 4 matter. We numerically determine the scaling exponent of the mass gap M ∼ N −1/dH ...
متن کاملA non-perturbative Lorentzian path integral for gravity
A well-defined regularized path integral for Lorentzian quantum gravity in three and four dimensions is constructed, given in terms of a sum over dynamically triangulated causal space-times. Each Lorentzian geometry and its associated action have a unique Wick rotation to the Euclidean sector. All space-time histories possess a distinguished notion of a discrete proper time. For finite lattice ...
متن کامل