On the relation between Euclidean and Lorentzian 2D quantum gravity

نویسنده

  • J. Ambjørn
چکیده

Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (generalized) Lorentzian spacetime. This motivates a map between the parameter spaces of the two theories, under which their propagators get identified. In two dimensions, Lorentzian quantum gravity can therefore be viewed as a “renormalized” version of Euclidean quantum gravity. PACS codes: 02.10.Eb, 04.20Gz, 04.60.Nc, 05.20.y

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euclidean and Lorentzian Quantum Gravity – Lessons from Two Dimensions

No theory of four-dimensional quantum gravity exists as yet. In this situation the two-dimensional theory, which can be analyzed by conventional field-theoretical methods, can serve as a toy model for studying some aspects of quantum gravity. It represents one of the rare settings in a quantum-gravitational context where one can calculate quantities truly independent of any background geometry....

متن کامل

Crossing the c=1 Barrier in 2d Lorentzian Quantum Gravity

In an extension of earlier work we investigate the behaviour of two-dimensional Lorentzian quantum gravity under coupling to a conformal field theory with c > 1. This is done by analyzing numerically a system of eight Ising models (corresponding to c = 4) coupled to dynamically triangulated Lorentzian geometries. It is known that a single Ising model couples weakly to Lorentzian quantum gravity...

متن کامل

Simplicial Euclidean and Lorentzian Quantum Gravity

One can try to define the theory of quantum gravity as the sum over geometries. In two dimensions the sum over Euclidean geometries can be performed constructively by the method of dynamical triangulations. One can define a proper-time propagator. This propagator can be used to calculate generalized Hartle-Hawking amplitudes and it can be used to understand the the fractal structure of quantum ...

متن کامل

ar X iv : h ep - l at / 0 30 60 33 v 1 2 5 Ju n 20 03 Fermions in 2 D Lorentzian Quantum Gravity

We implement Wilson fermions on 2D Lorentzian triangulation and determine the spectrum of the Dirac-Wilson operator. We compare it to the spectrum of the corresponding operator in the Euclidean background. We use fermionic particle to probe the fractal properties of Lorentzian gravity coupled to c = 1/2 and c = 4 matter. We numerically determine the scaling exponent of the mass gap M ∼ N −1/dH ...

متن کامل

A non-perturbative Lorentzian path integral for gravity

A well-defined regularized path integral for Lorentzian quantum gravity in three and four dimensions is constructed, given in terms of a sum over dynamically triangulated causal space-times. Each Lorentzian geometry and its associated action have a unique Wick rotation to the Euclidean sector. All space-time histories possess a distinguished notion of a discrete proper time. For finite lattice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008